Efficient SMP-Aware MPI-Level Broadcast over InfiniBand's Hardware Multicast

Amith R. Mamidala, Lei Chai, Hyun-Wook Jin and Dhabaleswar K. Panda

Department of Computer Science and Engineering
The Ohio State University

{mamidala,chail, jinhy,panda}@cse.ohio-state.edu

Presentation Outline

- Introduction & Background
- Motivation
- Design
- Performance Evaluation
- · Conclusions & Future Work

Introduction

- Recent Advances in cluster computing
 - Size of clusters reaching tens of thousands of nodes
 - Multi-core Architecture
 - 4 to 8 cores already available
 - foresee higher process density/node (upto 16 to 32)
- InfiniBand (IBA)
 - Widely being deployed to build large-scale clusters
 - Offers many advanced features for efficient and scalable performance
 - H/W Multicast, SRQ etc.
- MVAPICH (MPI over IBA)
 - Offers many features
 - Shared Memory Channel
 - · Low latency compared to network
 - · Intra-node point-to-point operations
 - Collectives
 - H/W Multicast RDMA
- MPI_Bcast
 - Important collective operation
 - Scalable , Low latency design over H/W multicast
 - (J. Liu, A. Mamidala, D.K. Panda, "Fast and Scalable MPI-Level Broadcast using InfiniBand's Hardware Multicast Support", IPDPS 04)

Background: MPI_Bcast over H/W Multicast

Presentation Outline

- Introduction & Background
- Motivation
- Design
- Performance Evaluation
- · Conclusions & Future Work

Motivation

Original solution not optimal for higher process count

Motivation

- Cost incurred for each multicast pkt
 - Replication at the nic
 - DMA transaction
- Significantly affects the latency if the process density increases

Motivation

- Reliability
 - H/W multicast is unreliable
- Large message handling
 - H/W multicast in MTUs
- How to employ best communication methods within a node (Shared Memory) and across the nodes (H/W Multicast) for efficient and reliable MPI_Bcast?

Presentation Outline

- Introduction
- Background & Motivation
- Design
- Performance Evaluation
- · Conclusions & Future Work

Design

- Direct Multicast into Shared Memory
 - Complex to implement
 - · Message notification
 - Completion notified to only the "attached" processes
 - Buffer Management
 - · Reliability
- Leader-based Approach
 - A designated process chosen as the leader
 - Leader handles
 - · H/W multicast packet delivery/reception
 - reliability
 - · large message handling
 - Shared memory to distribute the multicast packet to the remaining nodes
 - Simple solution
 - Taken this approach

Leader-based design

- leader attaches to the multicast group
- responsible for handling reliability
- forwards the multicast pkts to other nodes

Choosing Leader

- Fixing the leader doesnot always perform well
 - leader arrives late
 - Other nodes depend on leader for packet forwarding
- Dynamic Attach Policy
 - Choosing leader based on certain criterion
 - Chosen leader dynamically attaches to H/W multicast group

Dynamic Attach Policy

- Basic idea: Using Average Wait Time
 - Non-leader process selectively attaches/detaches based on this time
 - Average Wait Time relative to the leader
 - Average Wait Time = (Total Wait Time)/ (# Broadcast operations so far)
- Computing Total Wait Time
 - Depends upon the order of arrival of
 - Multicast packet
 - Leader process
 - Non-Leader process

Total Wait Time

Relevant Cases:

Case 1: Case 2:

Use a global flag visible to all processes to eliminate case 1

Presentation Outline

- Introduction
- Background & Motivation
- Design
- Performance Evaluation
- · Conclusions & Future Work

Performance Evaluation

- MPI_Bcast Latency test:
 - Maximum of the latency for each of non-root nodes
- Two cases considered:
 - All processes are sychronized
 - Leader process arrives late
- Three schemes for comparison
 - mcst_smp: new design with SMP-Aware multicast
 - mcst_nosmp: old design with non SMP-Aware multicast
 - original_ptp: original pt-to-pt design
- Incorporated into MVAPICH (OSU's MPI over IBA)

OSU MPI over InfiniBand

- High Performance Implementations
 - MPI-1 (MVAPICH)
 - MPI-2 (MVAPICH2)
- · Open Source (BSD licensing)
- Has enabled a large number of production IB clusters all over the world to take advantage of IB
 - Largest being Sandia Thunderbird Cluster (4000 node with 8000 processors)
- Have been directly downloaded and used by more than 340 organizations worldwide (in 33 countries)
 - Time tested and stable code base with novel features
- Available in software stack distributions of many vendors
- Available in the OpenIB/gen2 stack
- More details at http://nowlab.cse.ohio-state.edu/projects/mpi-iba/

Evaluation Testbed

- · Cluster A:
 - 16 Intel Xeon 3.0 GHz processors
 - PCI-X 64 bit, 133 MHz bus
 - MT23108 Mellanox HCAs
- · Cluster B:
 - 8 dual Intel Xeon EM64t 3.2 GHz processors
 - PCI-Express Interface
 - MT25128 Mellanox HCAs
- · Cluster C:
 - 2 Quad Opterons
 - PCI-X interface
 - MT23108 Mellanox HCAs
- · InfiniScale 24 port switch
- · OpenSM: Subnet Manager

MPI_Bcast Latency

- -Block distribution to scatter processes
- -Improves latency by a factor of 2.18 and 1.8 compared to original_mcst and smp_nomcst

Different configurations

- Cyclic or Block distributions have no affect for smp_mcst design
- -Impact original_mcst, Intra-node messages delivered first

MPI_Bcast Latency

- smp_mcst improves performance by a factor upto two
- process distribution: no impact for smp_mcst peformance
- block does better than cyclic for original_mcst

MPI_Bcast Latency

- Performance improvement upto 1.7 for Quad Opterons

Impact of Dynamic Attach Policy

- Threshold of 500 us (no. of processes * attach_latency: 2x250)

Presentation Outline

- Introduction
- Background & Motivation
- Design
- Performance Evaluation
- · Conclusions & Future Work

Conclusions & Future Work

- Efficient SMP-Aware MPI_Bcast using IBA's H/W multicast support
- Leader-based design,
- Dynamic Attach Policy proposed to mitigate skew effects
- Evaluated performance with different configurations
- Future work: Evaluation with higher SMPway systems
- Integrated into MVAPICH

Acknowledgements

Our research is supported by the following organizations

Current Funding support by

· Current Equipment support by

Web Pointers

http://www.cse.ohio-state.edu/~panda/ http://nowlab.cse.ohio-state.edu/

MVAPICH Web Page http://nowlab.cse.ohio-state.edu/projects/mpi-iba/ Questions?